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Abstract

Community detection is an important tool for exploring and classifying the properties of large complex networks and
should be of great help for spatial networks. Indeed, in addition to their location, nodes in spatial networks can have
attributes such as the language for individuals, or any other socio-economical feature that we would like to identify in
communities. We discuss in this paper a crucial aspect which was not considered in previous studies which is the possible
existence of correlations between space and attributes. Introducing a simple toy model in which both space and node
attributes are considered, we discuss the effect of space-attribute correlations on the results of various community
detection methods proposed for spatial networks in this paper and in previous studies. When space is irrelevant, our model
is equivalent to the stochastic block model which has been shown to display a detectability-non detectability transition. In
the regime where space dominates the link formation process, most methods can fail to recover the communities, an effect
which is particularly marked when space-attributes correlations are strong. In this latter case, community detection methods
which remove the spatial component of the network can miss a large part of the community structure and can lead to
incorrect results.
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Introduction

Many networks are embedded in real space and there is a cost

associated to the length of links. Examples of such spatial

networks can be found in infrastructures such as power grids,

distribution and logistic networks, transportation and mobility

networks, and also in computer science or biology with the

Internet and neuronal networks respectively (see for example the

review [1]). Spatial constraints are so important in these networks

that one can expect a non-trivial spatial organization as shown in

various examples [2–10].

In spatial networks, each node is described by its coordinates

(usually in a 2d space) but has in general other attributes. For

individuals, it can be any cultural or socio-economical parameter.

For infrastructure networks such as power grids, it can be the

voltage at the electric substations. In general, this attribute

depends on space and the resulting network displays entangled

layers of parameters. An important goal in the analysis of these

networks is to disentangle these different levels and to extract some

mesoscopic information from the spatial network structure. If one

is interested in studying effects beyond space [5], one should have

a straightforward way to ‘subtract’ it from the network, or in other

words, to disentangle space and the other attributes.

A natural tool for such a task is community detection which was

used for the characterization at a mesoscopic scale of the

properties of complex networks (see [11] for a review). A (real-

world) community can be naturally defined as a group of network

elements having the same attribute value such as language or age

for social networks, or the internet domain name for web pages. At

a more quantitative level, a community can be thought as a set of

nodes more densely linked with each other than with the rest of the

network [12]. Community detection procedures consist in finding

these groups of nodes in the network. Various methods were

proposed so far and we refer the interested reader to the review

[11]. In particular, the Newman-Girvan method [13] which relies

on the optimization of a quantity called modularity is frequently

used and despite its intrinsic limits shown in [14], it possesses the

advantage of being simple and relatively easy to implement.

Community detection can have several purposes in spatial

networks [2,4,15,16], but probably the main one is to disentangle

these various aspects, including spatial correlations of any type. In

most cases [2,4] communities are determined by the geography

only, which results from the simple fact that the most important

flows are among nodes in the same geographical regions. In this

sense, community detection in spatial networks offers a visual

representation of large exchange zones. This even suggests that

community detection might be an important tool in geography

and in the determination of new administrative or economical

boundaries [8].

In the general case, for a given network we don’t know to what

extent the existence of a link between a pair of nodes is due to a

specific factor or to space only. The link could exist because of a

strong attribute affinity between the nodes, or in the other extreme

case, because they are close neighbors. In general, one could

expect a combination of these two effects. If we are interested in

recovering communities defined by an attribute (such as language
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for example) from the network structure, we then have to consider

various assumptions such as the correlation between link

formation, attribute values and space. In order to understand

the effect of the underlying correlations, we can consider two

extreme cases. When the links are purely spatial and independent

from the attributes, if we remove the spatial component, we will

observe random communities (obtained for a random graph)

which contain a random number of nodes with random attributes.

In this situation, community detection is unapplicable and there is

no way to recover attribute communities from the network

structure. The other extreme case is when the formation of a link

depends on the attributes only. In this case, space is irrelevant and

any standard community detection method should give sensible

results, ie. communities made of nodes with the same attribute.

The important problem of interest here is thus the intermediate

case when the probability to have a link depends both on attributes

and on space. In this case we have to eliminate spatial effects in

order to recover the attribute structure. An important point in the

discussion is then the existence of correlation between space and

attributes. The nature and existence of these correlations will

govern the way we will have to do community detection. In this

paper, we construct a simple artificial network model allowing us

to investigate the effect of these correlations on the results of the

community detection procedure. We will test various methods on

this toy model.

Materials and Methods

In order to test these ideas and how community detection acts

on spatial networks, we define a simple model of spatial networks

with attributes. The attributes could be anything and we will

restrict - without loss of generality - to the simple binary case

where the attributes can have two possible values at each node.

We will introduce a simple model where nodes and their attributes

are randomly distributed in space. In general, according to the

various parameters of the model, the attributes can be delocalized

in space or, on the contrary, be localized in some well-defined

region. In some cases, some attribute community could emerge in

space, but our target community structure will always be the

partition of the network in the two subgraphs composed of nodes

with the same attribute and we will test how various methods can

recover these two communities. In this respect the main focus of

our work will be the disentanglement of the sole attribute network

features beyond the spatial node arrangements.

We construct the test (benchmark) network defining the vertex

and edge properties in the following way.

Vertex Properties
1. We generate points/nodes in the 2d space (x2z) in two spatial

communities, say the North and the South, around the two centers

(x,z)~(0,zL) and (x,z)~(0,{L) (see Fig. 1). A simple way to do

that is to generate points i around the two centers according to the

probability.

p(xi,zi)!e{dci=‘ ð1Þ

where dci is the euclidean distance between one of the centers c

and the node i of coordinates (xi,zi):

Figure 1. The two spatial communities North and South are well separated having their average size. ‘~L. In the A panel we present
the case ~0 where there is a perfect correlation between the space and the attributes (green and red colors). In the B panel, the uncorrelated case
~0:5 is presented where the attribute colors are randomly distributed between the two segregated spatial communities (for the sake of clarity, only

40 out of the 100 nodes used in our simulations are shown here, and b~1:0).
doi:10.1371/journal.pone.0037507.g001
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2. We assign an attribute Si to each node i. In the following we

will focus on the simplest case where this attribute can take only

two values Si~+1 (which in this paper are the red and green

colors). A simple way to control correlations between attribute and

space is to choose Si~z1 with probability q for zw0 and

Si~{1 with probability 1{q. In order to tune the various cases

we introduce the parameter , with q~1{ , that determines the

mixing between space and attributes, ranging from 0.0 to 0.5. In

the case ~0:0 space and attributes are strongly correlated, while

for ~0:5 space and attribute are totally uncorrelated.

So the relevant parameters for the generation of network nodes

are ‘ and .

Edge Properties
3. We then construct the network: for each pair of nodes, we

create a link between nodes i and j with probability

plink(i,j)!ebSiSj{dij=‘0 where ‘0 plays the role of the typical size

of the spatial community (and where dij is the euclidian distance

between i and j). It is worth observing that the parameter l0 is the

typical length of links when space dominates while ‘ is the typical

spatial size of the northern and southern communities. Here the

relevant edge parameters are b and ‘0, but in order to simplify the

model and to focus on the efficiency of community detection

methods, we choose ‘~‘0: This choice implies that when space

dominates the link formation, the links cannot be much larger than

the community size. In this case, the only spatial relevant

parameter will be ‘=L and we can fix L to be equal to 1.0 so

Figure 2. The two communities North and South are mixing up each other with their average size ‘ approaching the value of L
(in this case ‘~2L). In the A panel, we display the case ~0:0. Even if the spatial correlation is fading away the space-attribute correlation is still
strong enough to display an attribute community. In the B panel, we show the extreme case ~0:5 where the attributes are not correlated with
space. In this case spatial mixing destroys the attribute community structure (for the sake of clarity, only 40 out of the 100 nodes used in our
simulations are shown here, and b~1:0).
doi:10.1371/journal.pone.0037507.g002

Table 1. Behaviour of the model in the regimes b‘%1 and b‘%1.

Spatial correlation b‘%1: Space is the governing factor b‘&1: The spatial component of the links is irrelevant

Spatially correlated: ( ~0:0) N Links are between neighboring nodes but spatial
communities correspond to the attribute ones.
N Any regular community detection will work.

N Links are between nodes with the same attribute.
N Any community detection method should work.

Spatially uncorrelated: ( ~0:5) N Links are between neighboring nodes but the
attributes are anywhere in space.
N It is necessary to ‘remove’ space in order
to uncover the attribute communities.

N Links are between nodes with the same attribute.
N Any community detection method should work.

The table gives an account of the behaviour of the model in the regimes b‘%1 and b‘%1 both in the correlated ( ~0:0) and uncorrelated ( ~0:5) case.
doi:10.1371/journal.pone.0037507.t001
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that the spatial variability will be governed by ‘. We can rewrite

the probability plink(i,j) as

plink(i,j)~
1

N
eb(SiSj{dij=‘b) ð2Þ

where N~
P

ivj exp (bSiSj{dij=‘) is the normalization constant.

As in the Erdos-Renyi random graph, the number of edges is a

random variable with small fluctuations around its average. The

number of nodes is thus fixed in each network but not the number

of edges or the average degree, and this implies that we will have

to average our observables over different realizations of the

network.

When b‘ is large, links are essentially between nodes with the

same attribute (irrespective of their distance) and if b‘ is small then

space is the governing factor and links are essentially between

neighboring nodes.

In this way the probability associated to a link depends on both

space and attribute, and the correlation between attributed and

space can be controlled. If the attribute is the same between two

nodes the probability to have a link will be reinforced, otherwise it

will be weakened, the interplay being controlled by the parameter

b. Concerning the spatial factor, the closer the nodes and the

larger the probability associated to this link.

The generation of attributes is an important point. We have two

values of the attribute only so that we need to generate attributes

for only half (N=2) of the nodes. So in the following we will study

the specific case of an attribute community structure of equal

size communities: half of the nodes has attribute Si~z1 and the

other half has Si~{1. We will investigate here two extreme

situations:

N Attributes and space uncorrelated: this case is recovered by

choosing ~1=2:

N Attributes and space are strongly correlated. For this, we

choose small. In this case, the spatial communities are also

attribute communities.

Furthermore we can distinguish two different spatial arrange-

ments for the northern and southern communities. The first case

corresponds to a situation where the two communities are well

separated with their average size ‘ƒL and the spatial effects

dominate the community structure (see Fig. 1). The second

situation corresponds to a larger value of the average community

size ‘ where the two communities start mixing up while ‘
approaches L (see Fig. 2).

There are many proposal in the literature for networks

benchmarking (see for example [17]), but this is -up to our

knowledge- the first one which takes into account the correlation

between space and node attributes.

The interplay between space and attributes can lead to various

situations that need to be understood within the framework of

community detection. Indeed we have two main regimes b‘&1
and b‘%1 (see also Table 1):

(a) b‘&1. In this case, the spatial component of the links

becomes irrelevant (see Eq. 2) and for a given value of b the

community structure due to the node attributes will emerge,

independently from the correlation between space and

attributes. In this regime any community detection method

should work.

(b) b‘%1. Here we have two subcases depending con the

correlation between space and attributes:

N ( ~0:0) Space and attributes are correlated: any regular

community detection will work and moreover if you carefully

remove the spatial effect the attribute community structure

will be recovered.

N ( ~0:5) Space and attributes are uncorrelated: in this case

the links are between neighboring nodes but the attributes

are anywhere in space. Standard community detection

methods won’t work and it is then necessary to ‘remove’

space in order to uncover the attribute communities.

The general assumption of our model is to what extent it is

possible to detect communities even if there is a spatial influence.

Without space the initial situation is clear: we have two

communities by construction and the probability of two nodes to

be connected is related to the attribute similarities. Nodes with

S = +1 tend mainly to connect to each other and the same for the

S = 21 nodes. If we then put nodes in space and enhance the

connection probability due to the proximity of nodes, it is not clear

if a regular community detection method is able to detect the

original two communities structure. We thus see that correlations

between space and attributes can be misleading and any

community detection method for spatial networks should take

into account this problem. There are now many community

detection methods [11] and in the following we will use modularity

optimization introduced by Newman and Girvan [13]. This

method suffers from various problems, the most important being

the existence of a resolution limit [14] which prevent it to detect

smaller modules, but it is simple enough to implement. In

addition, our point here is to understand the effect of space-

attributes correlations on community detection and not to

compare various methods. In the following we will thus essentially

probe the Newman-Girvan method and variants proposed here

and in [5] for cases where the space and attribute have different

degrees of correlation.

The modularity function which needs to be optimized is defined

as [13]:

Q~
1

2m

X

ij

(Aij{Pij)d(Ci,Cj) ð3Þ

where the sum is over all the node pairs, A is the adjacency matrix,

m is the total number of edges and Pij is the expected number of

edges between the vertices i e j for a given null model. The d
function will result in a null contribution for couples of vertices not

belonging to the same community (Ci=Cj ). For an unweighted

network, one can choose Pij~
kikj

2m
which amounts to take as a

null model a random network with the same degree sequence as

the original network. In order to introduce explicitly space, the

idea is to change the null model defined by Pij and to compare the

actual network with this null model. Recently, such a proposal was

made in [5] where the quantity Pij is directly obtained from the

data describing the network. More precisely, Expert et al. [5] used

the following form

PData
ij ~NiNjf (dij) ð4Þ

where Ni is related to the importance of the node i (such as the

population for example). This form is reminiscent of the

gravitional model for traffic flows (see for example [18]) where

flows are proportional to the product of populations and decrease

with distance. In [5], the authors proposed to estimate the

unknown function f directly from the empirical data by

Spatial Correlations in Attribute Communities
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f (d)~

P
i,jDdij~d Aij

P
i,jDdij~d NiNj

ð5Þ

which can be seen as the probability to have two nodes connected

at a distance d. Note that there is a binning procedure hidden in

Eq. (5). The usual way to proceed in these cases consists in

introducing a discretization of the space in bins that capture

classes of distances. Following [5], we performed a binning of

distances selecting the best value for the number of bins after a

detailed stability study of the distributions obtained from the

data.

Expert et al. [5] applied this method to the specific case of the

phone network in Belgium, and try to reconstruct linguistic

communities (Flemish and French) beyond individuals spatial

location. This choice is probably the best one if there are no

correlations between the attribute under study (in their case the

linguistic membership of the people calling each other) and space.

In this specific case, extracting the node spatial dependencies

from the actual link distribution present in the network data is the

most effective way to subtract the spatial component. Otherwise if

there are any correlations between space and node attributes, the

data contain in an unknown proportion the two informations

(space and attribute) and their method needs to be reformulated.

One possible way to do this is to explicitly guess a spatial

dependency of the link distribution and to put it as an

independent factor in the optimization function definition. In

order to be able to deal with the correlated case and to remove

spatial effect only, we thus propose the following explicit function

of space for Pij

P
Spatial
ij ~

1

Z
kikjg(dij) ð6Þ

where Z is the normalization constant, ki the degree of the node i,

dij the euclidean distance between node i and node j. The

function g(d) is a decreasing function of distance and its role is to

remove the spatial effect. A simple choice is

g(d)~e{d=‘ ð7Þ

where ‘ is the average distance between nodes in the network. Of

course ‘ is a rough approximation of the real ‘ value, but we will

see in the following that it is enough to capture the essence of the

spatial signature of the network.

We now need a method to compare the community structure

obtained with the modularity optimization and the expected one

for the attribute membership. Many proposals have been

introduced [19–21], and we decided to use here the Jaccard Index

[22,23]. This index is an extension of the Rand index [24], and is

considered to be one of the most robust measure for the clustering

and classification assessment of graphs [25]. If C is the partition to

be evaluated and C’ the reference one the definition is as follows

JI~
a

azbzc
ð8Þ

where a is the number of vertices pairs that are in the same

community for both C and C’, b is the number of pairs that are in

different communities in C but in the same one in C’ and finally c

Figure 3. Three spatial network configurations are presented for the constant value b‘~0:2 and the correlated case ~0:0 with
‘~1:0 and L~1:0. The color (red and green) are the attributes, while the geometrical shapes represent the community memberships found with the
various community detection procedure discussed in this paper. In the A panel, we present the case JI ~0:232, obtained with the Data method. Due
to the low JI value four communities are present (instead of the two associated with the attributes in red and green colors) and they are also mixed
up between the south and the north spatial regions. In the B panel we show the JI ~0:579 case obtained with the Spatial method. Three
communities are present and in the northern part there is a prevalence of circles while in the southern of triangles. The C panel displays the case
JI ~0:903 obtained with the Newman-Girvan formulation and the attribute community structure is almost completely recovered.
doi:10.1371/journal.pone.0037507.g003

Spatial Correlations in Attribute Communities
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is the number of vertices pairs that are in the same community in C

but not in C’ (or conversely). This quantity JI is in the interval

[0,1] and the closer to one, the better the agreement between the

two partitions. For JI~1 there is a perfect match between the two

community structures. In our case, it would mean that the

attribute communities are exactly detected. For values of JI less

than 1 the discrepancy can depend both on the size of the

partitions in the community structure and/or the number of them

and in this respect the Jaccard Index is a good method to compare a

very heterogeneous range of community structures.

In order to get a more intuitive picture of the Jaccard index, we

show three different cases in Fig. 3 for the same value b‘~0:2 (and

in the case ~0:0, ‘~1:0 and L~1:0) but with different values of

JI . The first case corresponds to a relatively small value JI~0:232
(obtained with the ‘Data’ method of [5], where the binning is done

as in their paper, which shows a partition in four communities

(instead of the two associated with the attributes in red and green

colors). For intermediate values such as JI~0:579 (obtained with

our ‘Spatial’ method) the communities reduce to three with a

prevalence of circles in the nothern part and triangles in the

Figure 4. The community structure obtained for various values of ‘ with fixed b~1:0. Each point represents the average Jaccard index for
100 network community detection and the error bar is its standard deviation. The correlated case ~0 is shown on the A panel, and on the B panel
we show the uncorrelated case ~0:5. In A for the regime b‘%1 both the Newman-Girvan and the ‘Spatial’ method formulations give the right
attribute community structure corresponding to the Jaccard index JI~1:0. For the regime b‘&1 all the three formulations work well since the links
due to the attribute similarity are strong enough to preserve the community structure irrespectively from the node’s location. In the uncorrelated
case (B panel), the Data based formulation performs better respect to the Spatial formulation, since it extracts correctly the spatial information,
directly from the data. In any case both spatial methods reach the right attribute community structure at almost the same value for ‘^1:0. The
Newman-Girvan standard formulation instead fails to detect the correct result up to values of ‘^1:8. Note that in the x-axis we considered only
values equal or above 0.3 since we verified that below this value the model generates disconnected networks.
doi:10.1371/journal.pone.0037507.g004

Spatial Correlations in Attribute Communities
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southern (see B panel in Fig. 3). The last case (obtained with the

original Newman-Girvan formulation) corresponds to a value

JI~0:903, that almost recovers the attribute community struc-

ture.

Finally, in order to have a baseline value we also computed the

average Jaccard for a completely random partition for N~100
nodes and we obtain the value JI~0:08+0:05.

Results

The goal of this spatial community detection is to substract the

spatial component and to recover the (two) attribute communities.

We thus have three community detection methods: the original

Newman-Girvan method, the ‘Data’ method proposed in [5], and

our ‘Spatial’ method defined by the null model of Eq. (6) and, in

order to understand their limits, we will test them against the

benchmark network introduced above.

We will now see how these three different methods perform in

the two extreme cases of attribute correlated ( ~0) and

uncorrelated ( ~0:5) with space, both varying the size of the

spatial communities ‘ and the attribute linkage strength b. The

size of the test network is N~100 nodes and the number of links

depends on the probability previously defined (Eq. 2). We

generated 100 network realizations for each set of parameters (b,

‘, and L~1). For each point of the simulation curve the error bars

Figure 5. The community structure obtained for various values of b with fixed community size ‘~1:0. Each point represents the average
Jaccard index for 100 network community detection and the error bar is its standard deviation. The correlated case ~0 is shown on the A panel, and
on the B panel we show the uncorrelated case ~0:5. In the uncorrelated case the ‘Data’ method fails in detecting the attribute community structure
for all the b‘ regimes present in the figure, while the other two methods start working at b~0:8. In the uncorrelated case the Newman-Girvan
method is not able to detect the attribute community structure, while the spatial methods perform similarly better approaching the correct JI~1:0
value around b~0:8.
doi:10.1371/journal.pone.0037507.g005

Spatial Correlations in Attribute Communities
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are the standard deviation for 100 modularity measures. To

optimize the modularity we used the Louvain method [26].

The behavior of the model depends on both parameters b and ‘
and we will first show the case with fixed attribute strengthb. We

show on the A panel of figure 4 the correlated case (~0) with a

fixed b~1:0.

In this case, for b‘&1, all the three methods work well, as

expected and we obtain a perfect match (JI~1) between the

community structure resulting from the modularity optimization

and the attribute communities. Space is not relevant in this regime

and links exist essentially among nodes with the same attribute.

For b‘%1 both the Newman-Girvan modularity and the ‘Spatial’

method give the correct result. The latter actually subtract only the

spatial dependency while the the ‘Data’ method mixes the space

effect with the correlated attribute feature, resulting in a wrong

community detection. The ‘Data’ method, for a sufficiently large

value of ‘ will approach anyway the correct JI~1:0 value.

In the uncorrelated case (Fig. 4, B panel) and for a low values of

b‘, the Newman-Girvan modularity is not able to detect the right

attribute communities, since the attribute correlation is not strong

enough to group together the nodes of similar type. Instead the

other two methods perform better in getting the attribute

communities since they are able to correctly eliminate the effect

of space and recover the attribute community structure, even for a

small attribute correlation. The formulation based on Data

performs even better since it eliminates the effect of space almost

pointwise, but in any case the correct result of JI~1 is reached

almost at the same value ‘^1:0 for both spatial methods.

In Figure 5 we show the results for the case of a fixed

community size (‘~1:0) but where we vary the attribute strength

b. In the A panel the correlated case is presented ( ~0). As

expected the ‘Data’ method for low values of b has problems in

detecting the attribute community structure and only for high

attribute strengths (b) it starts to correctly detect the target

communities. In the uncorrelated case, where the space is

irrelevant, the standard Newman-Girvan formulation fails, while

the two spatial methods performs similarly better (Fig. 5).

In order to summarize these results we show in Table 2 the only

relevant regime (b) previously defined, b‘%1 (the (a) regime b‘&1
is trivial as we can verify in Figs 4 and 5) for all the parameters of

interest ( , ‘ and b) and for the three community detection

methods. From this Table, it clearly emerges that the Spatial

method is a very good interplay in all situations, while to get the

Table 2. Summary of the performances.

Spatial correlation Newman-Girvan Data Spatial

2*0.0 (correlated) ‘ VG B VG

b VG B G

2* 0.5 (uncorrelated) ‘ B VG G

b B G G

The table summarizes the performances, as can be extracted from Figs 4 and 5,
of the three methods (Newman-Girvan, Data and Spatial) in the only non trivial
regime b‘%1, both in the correlated ( ~0:0) and uncorrelated ( ~0:5) case.
Since in the plots we vary both ‘ and b, we distinguish here these two cases. In
order to be able to compare this results we classified them according to the
following criteria: B, G and VG that stand for Bad, Good and Very Good. We
assign VG when there is a very good agreement with the target attribute
community structure (JI very close to 1), G when the behavior is rapidly
approaching the correct result even for low/medium values of the parameters ‘
and b, and finally B when it completely fails to recover the right community
structure.
doi:10.1371/journal.pone.0037507.t002

Figure 6. Transition obtained in the case ‘&L from the detectable to the undetectable community structure regions. This
transition was described in [28] for the stochastic block model which corresponds to our model with q~2 attributes when the effect of space is
absent, i.e. ‘ large (‘~4:0 in the actual simulation). The control parameter is then exp ({2b) and the Jaccard index is our order parameter. All the
three community detection methods discussed in this paper display the same behavior adding evidence to the universality of the transition
presented in [28].
doi:10.1371/journal.pone.0037507.g006
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best performances one has to choose the suitable method for any

specific case.

We note that the behavior of the error bar sizes in these

figures 4, is interesting. For b‘%1 and b‘&1, the error in the

modularity estimate is relatively small. The error bar -or

equivalently the fluctuations of the Jaccard index- are the largest

for b‘^1. In this region, the community detection methods are

thus more sensitive to small fluctuations of the network which

implies a peak in the ‘susceptibility’ of the system. This behavior is

reminiscent of the phase transition between detectability and non-

detectability presented in [27,28]. Indeed, in figure 6 we show the

limiting case of l&L (here we choose numerically l~4 and L~1)

for which the effect of space is irrelevant. In this limit, our model

becomes equivalent to the stochastic block model of [28] with

q~2 possible values of the attribute. In our case the control

parameter (cout=cin in [28]) is exp ({2b), while the order

parameter is the Jaccard index. It is clear from Fig. 6 that the

same effect is present (see figure 2 in [28]) even if the critical point

is shifted due to a different community detection method and

another definition of the order parameter. Moreover, respect to

the result in [28], in the undetactable regime (b~0), the value of

the order parameter is not zero. As mentioned above, for a

completely random partition the JI is JI~0:08+0:05. We

observe that in our case we are a little bit above because it is

known that even for a random network the modularity can be

positive [29] and in this way the maximization of the modularity

extracts a subset of the ensemble of all the possible partitions that

increases the average modularity and consequently the average

Jaccard index.

We thus recover the results of [28] and in addition our result

seems to point to the existence of a spatial phase transition actually

independent of the community detection method used.

Finally, we checked the performances of the Data and Spatial

formulations looking at the JI values when varying the parameter

for a fixed b‘ value (see Fig. 7). For each value of an higher JI

value signals a better behavior since it is closer to the maximum

value JI~1. We choose first the value b‘~0:8 (we also tested

b‘~1:0 which gives similar results). There is a crossover in the

performances around ^0:25. Below this value, the Spatial

method performs better while above that point the Data method

does slightly better. This result thus shows that there can be a non-

negligible range of correlations (measured here by ) for which the

spatial community detection results can be incorrect.

Discussion

In this paper we propose a simple model which allows us to

test community detection on spatial networks. Our model

generates simple graphs that mix both geographical properties

and attributes. In the literature many other spatial network

models have been introduced for which nodes are connected

each other through a certain spatial rule. Examples range from

the growth of street networks to the evolution of the territorial

infrastructural networks (see [1] for an extensive list of this kind

of models). Moreover a whole class of models that study node

properties and their aggregation has recently been introduced

and one of the most important of them is the stochastic block

model in which a combination of various kind of node attributes

are present. The novelty of our approach is to study at the same

time these various aspects (geography and attributes), and, up to

our knowledge, our model is the first one that considers

simultaneously the two factors, space and attributes, in the

context of community detection.

In particular, we explicitly show that the existence of

correlations between attributes and space drastically affects the

result of community detection. The results presented in this study

show that community detection in spatial networks should be

taken with great care, and that including space in community

detection methods could lead to results difficult to interpret. We

show that for weak correlations, most community detection

methods work, but that for stronger correlation community

detection methods which remove the spatial component of the

network can lead to incorrect results. It is thus important to have

some information on the correlations between space and attributes

in order to assess the validity of the results of community detection

methods. In practical applications however, these attributes-space

Figure 7. Performances of the Spatial and Data modularity formulations. We show here the case b‘~0:8 where there is a crossover in the
performances around ^0:25. Below this value ~0:25 the Spatial method performs better and above the Data method is slightly better.
doi:10.1371/journal.pone.0037507.g007
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correlations are generally not known and this calls for the need of

new approaches, for example such as community detection

methods including in some tunable form the existence of such

correlations.
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